
napkinXC

Oct 17, 2022

Contents:

1 Python Quick Start 3

2 Using C++ executable 5

3 Python API 9

4 Indices and tables 17

Index 19

i

ii

napkinXC

Note: Documentation is currently a work in progress!

napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification that implements
the following methods both in Python and C++:

• Probabilistic Label Trees (PLTs) - for multi-label log-time training and prediction,

• Hierarchical softmax (HSM) - for multi-class log-time training and prediction,

• Binary Relevance (BR) - multi-label baseline,

• One Versus Rest (OVR) - multi-class baseline.

All the methods decompose multi-class and multi-label into the set of binary learning problems.

Right now, the detailed descirption of methods and their parameters can be found in this paper: Probabilistic Label
Trees for Extreme Multi-label Classification

Contents: 1

https://arxiv.org/pdf/2009.11218.pdf
https://arxiv.org/pdf/2009.11218.pdf

napkinXC

2 Contents:

CHAPTER 1

Python Quick Start

1.1 Installation

Python (3.5+) version of napkinXC can be easily installed from PyPy repository on Linux and MacOS (Windows is
currently not supported). It requires modern C++17 compiler, CMake and Git installed:

pip install napkinxc

or directly from the GitHub repository:

pip install pip install git+https://github.com/mwydmuch/napkinXC.git

1.2 Usage

napkinxc module contains three submodules: models that contains all the model classes and two additional modules

Minimal example of usage:

from napkinxc.datasets import load_dataset
from napkinxc.models import PLT
from napkinxc.measures import precision_at_k

X_train, Y_train = load_dataset("eurlex-4k", "train")
X_test, Y_test = load_dataset("eurlex-4k", "test")
plt = PLT("eurlex-model")
plt.fit(X_train, Y_train)
Y_pred = plt.predict(X_test, top_k=1)
print(precision_at_k(Y_test, Y_pred, k=1))

3

napkinXC

4 Chapter 1. Python Quick Start

CHAPTER 2

Using C++ executable

napkinXC can also be built and used as an executable that can be used to train and evaluate models and make a
prediction.

2.1 Building

To build napkinXC, first clone the project repository and run the following commands in the root directory of the
project. It requires modern C++17 compiler, CMake and Git installed. Set CXX and CC environmental variables
before running cmake command if you want to build with the specific C++ compiler.

cmake .
make

-B options can be passed to CMake command to specify other build directory. After successful compilation, nxc
executable should appear in the root or specified build directory.

2.2 LIBSVM data format

napkinXC supports multi-label svmlight/libsvm like-format (less strict) and format of datasets from The Extreme
Classification Repository, which has an additional header line with a number of data points, features, and labels.

The format is text-based. Each line contains an instance and is ended by a \n character.

<label>,<label>,... <feature>(:<value>) <feature>(:<value>) ...

<label> and <feature> are indexes that should be positive integers. Unlike to normal svmlight/libsvm format,
labels and features do not have to be sorted in ascending order. The :<value> can be omitted after <feature>, to
assume value = 1.

5

https://manikvarma.github.io/downloads/XC/XMLRepository.html
https://manikvarma.github.io/downloads/XC/XMLRepository.html

napkinXC

2.3 Usage

nxc executable needs command, i.e. train, test, predict as a first argument. -i/--input and -o/--output argu-
ments needs to be always provided.

nxc <command> -i <path to dataset> -o <path to model directory> <args> ...

2.4 Command line options

Usage: nxc <command> <args>

Commands:
train Train model on given input data
test Test model on given input data
predict Predict for given data
ofo Use online f-measure optimization
version Print napkinXC version
help Print help

Args:
General:
-i, --input Input dataset, required
-o, --output Output (model) dir, required
-m, --model Model type (default = plt):

Models: ovr, br, hsm, plt, oplt, svbopFull, svbopHf,
→˓brMips, svbopMips

--ensemble Number of models in ensemble (default = 1)
-t, --threads Number of threads to use (default = 0)

Note: -1 to use #cpus - 1, 0 to use #cpus
--hash Size of features space (default = 0)

Note: 0 to disable hashing
--featuresThreshold Prune features below given threshold (default = 0.0)
--seed Seed (default = system time)
--verbose Verbose level (default = 2)

Base classifiers:
--optimizer Optimizer used for training binary classifiers (default =

→˓liblinear)
Optimizers: liblinear, sgd, adagrad, fobos

--bias Value of the bias features (default = 1)
--weightsThreshold Threshold value for pruning models weights (default = 0.1)

LIBLINEAR: (more about LIBLINEAR: https://github.com/cjlin1/
→˓liblinear)

-s, --liblinearSolver LIBLINEAR solver (default for log loss = L2R_LR_DUAL, for
→˓l2 loss = L2R_L2LOSS_SVC_DUAL)

Supported solvers: L2R_LR_DUAL, L2R_LR, L1R_LR,
L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC,

→˓L2R_L1LOSS_SVC_DUAL, L1R_L2LOSS_SVC
-c, --liblinearC LIBLINEAR cost co-efficient, inverse of regularization

→˓strength, must be a positive float,
smaller values specify stronger regularization (default =

→˓10.0)
--eps, --liblinearEps LIBLINEAR tolerance of termination criterion (default = 0.

→˓1)
(continues on next page)

6 Chapter 2. Using C++ executable

napkinXC

(continued from previous page)

SGD/AdaGrad:
-l, --lr, --eta Step size (learning rate) for online optimizers (default

→˓= 1.0)
--epochs Number of training epochs for online optimizers (default

→˓= 1)
--adagradEps Defines starting step size for AdaGrad (default = 0.001)

Tree:
-a, --arity Arity of tree nodes (default = 2)
--maxLeaves Maximum degree of pre-leaf nodes. (default = 100)
--tree File with tree structure
--treeType Type of a tree to build if file with structure is not

→˓provided
tree types: hierarchicalKmeans, huffman,

→˓completeKaryInOrder, completeKaryRandom,
balancedInOrder, balancedRandom,

→˓onlineComplete

K-Means tree:
--kmeansEps Tolerance of termination criterion of the k-means

→˓clustering
used in hierarchical k-means tree building procedure

→˓(default = 0.001)
--kmeansBalanced Use balanced K-Means clustering (default = 1)

Prediction:
--topK Predict top-k labels (default = 5)
--threshold Predict labels with probability above the threshold

→˓(default = 0)
--thresholds Path to a file with threshold for each label

Test:
--measures Evaluate test using set of measures (default = "p@1,r@1,

→˓c@1,p@3,r@3,c@3,p@5,r@5,c@5")
Measures: acc (accuracy), p (precision), r (recall), c

→˓(coverage), hl (hamming loos)
p@k (precision at k), r@k (recall at k), c@k

→˓(coverage at k), s (prediction size)

2.4. Command line options 7

napkinXC

8 Chapter 2. Using C++ executable

CHAPTER 3

Python API

3.1 Models

models.PLT
models.HSM
models.BR
models.OVR

3.2 Datasets

datasets.download_dataset
datasets.load_dataset
datasets.load_libsvm_file
datasets.load_json_lines_file
datasets.to_csr_matrix
datasets.to_np_matrix

3.3 Measures

measures.precision_at_k(Y_true, Y_pred[,
k])

Calculate precision at 1-k places.

measures.recall_at_k(Y_true, Y_pred[, k, . . .]) Calculate recall at 1-k places.
measures.coverage_at_k(Y_true, Y_pred[, k]) Calculate coverage at 1-k places.
measures.dcg_at_k(Y_true, Y_pred[, k]) Calculate Discounted Cumulative Gain (DCG) at 1-k

places.
Continued on next page

9

napkinXC

Table 3 – continued from previous page
measures.Jain_et_al_inverse_propensity(Y[,
A, B])

Calculate inverse propensity as proposed in Jain et al.

measures.Jain_et_al_propensity(Y[, A,
B])

Calculate propensity as proposed in Jain et al.

measures.ndcg_at_k(Y_true, Y_pred[, k, . . .]) Calculate normalized Discounted Cumulative Gain
(nDCG) at 1-k places.

measures.psprecision_at_k(Y_true, Y_pred,
inv_ps)

Calculate Propensity Scored Precision (PSP) at 1-k
places.

measures.psrecall_at_k(Y_true, Y_pred,
inv_ps)

Calculate Propensity Scored Recall (PSR) at 1-k places.

measures.psdcg_at_k(Y_true, Y_pred, inv_ps) Calculate Propensity Scored Discounted Cumulative
Gain (PSDCG) at 1-k places.

measures.psndcg_at_k(Y_true, Y_pred, inv_ps) Calculate Propensity Scored normalized Discounted
Cumulative Gain (PSnDCG) at 1-k places.

measures.hamming_loss(Y_true, Y_pred) Calculate unnormalized (to avoid very small numbers
because of large number of labels) hamming loss - av-
erage number of misclassified labels.

measures.f1_measure(Y_true, Y_pred[, . . .]) Calculate F1 measure, also known as balanced F-score
or F-measure.

3.3.1 napkinxc.measures.precision_at_k

napkinxc.measures.precision_at_k(Y_true, Y_pred, k=5)
Calculate precision at 1-k places. Precision at k is defined as:

𝑝@𝑘 =
1

𝑘

∑︁
𝑙∈rank𝑘(𝑦𝑦𝑦)

𝑦𝑙 ,

where 𝑦𝑦𝑦 ∈ 0, 1𝑚 is ground truth label vector, 𝑦𝑦𝑦 ∈ R𝑚 is predicted labels score vector, and rank𝑘(𝑦𝑦𝑦) returns the
𝑘 indices of 𝑦𝑦𝑦 with the largest values, ordered in descending order.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

Returns Values of precision at 1-k places.

Return type ndarray

3.3.2 napkinxc.measures.recall_at_k

napkinxc.measures.recall_at_k(Y_true, Y_pred, k=5, zero_division=0)
Calculate recall at 1-k places. Recall at k is defined as:

𝑟@𝑘 =
1

||𝑦𝑦𝑦||1

∑︁
𝑙∈rank𝑘(𝑦𝑦𝑦)

𝑦𝑙 ,

10 Chapter 3. Python API

napkinXC

where 𝑦𝑦𝑦 ∈ 0, 1𝑚 is ground truth label vector, 𝑦𝑦𝑦 ∈ R𝑚 is predicted labels score vector, and rank𝑘(𝑦𝑦𝑦) returns the
𝑘 indices of 𝑦𝑦𝑦 with the largest values, ordered in descending order.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• zero_division (float, optional) – Value to add when there is a zero division,
typically set to 0, defaults to 0

Returns Values of recall at 1-k places.

Return type ndarray

3.3.3 napkinxc.measures.coverage_at_k

napkinxc.measures.coverage_at_k(Y_true, Y_pred, k=5)
Calculate coverage at 1-k places.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

Returns Values of coverage at 1-k places.

Return type ndarray

3.3.4 napkinxc.measures.dcg_at_k

napkinxc.measures.dcg_at_k(Y_true, Y_pred, k=5)
Calculate Discounted Cumulative Gain (DCG) at 1-k places. DCG at k is defined as:

𝐷𝐶𝐺@𝑘 =

𝑘∑︁
𝑖=1

𝑦rank𝑘(𝑦𝑦𝑦)𝑖

log2(𝑖+ 1)
,

where 𝑦𝑦𝑦 ∈ 0, 1𝑚 is ground truth label vector, 𝑦𝑦𝑦 ∈ R𝑚 is predicted labels score vector, and rank𝑘(𝑦𝑦𝑦) returns the
𝑘 indices of 𝑦𝑦𝑦 with the largest values, ordered in descending order.

Parameters

3.3. Measures 11

napkinXC

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

Returns Values of DCG at 1-k places.

Return type ndarray

3.3.5 napkinxc.measures.Jain_et_al_inverse_propensity

napkinxc.measures.Jain_et_al_inverse_propensity(Y, A=0.55, B=1.5)
Calculate inverse propensity as proposed in Jain et al. 2016. Inverse propensity 𝑞𝑙 of label 𝑙 is calculated as:

𝐶 = (log𝑁 − 1)(𝐵 + 1)𝐴 , 𝑞𝑙 = 1 + 𝐶(𝑁𝑙 +𝐵)−𝐴 ,

where 𝑁 is total number of data points, 𝑁𝑗 is total number of data points for and 𝐴 and 𝐵 are dataset specific
parameters.

Parameters

• Y (ndarray, csr_matrix, list[list[tuple[int|str, float]]) – La-
bels (typically ground truth for train data) provided as a matrix with non-zero values for
relevant labels.

• A (float, optional) – Dataset specific parameter, typical values:

– 0.5: WikiLSHTC-325K and WikipediaLarge-500K

– 0.6: Amazon-670K and Amazon-3M

– 0.55: otherwise

Defaults to 0.55

• B (float, optional) – Dataset specific parameter, typical values:

– 0.4: WikiLSHTC-325K and WikipediaLarge-500K

– 2.6: Amazon-670K and Amazon-3M

– 1.5: otherwise

Defaults to 1.5

Returns Array with the inverse propensity for all labels

Return type ndarray

3.3.6 napkinxc.measures.Jain_et_al_propensity

napkinxc.measures.Jain_et_al_propensity(Y, A=0.55, B=1.5)
Calculate propensity as proposed in Jain et al. 2016. Propensity 𝑝𝑙 of label 𝑙 is calculated as:

𝐶 = (log𝑁 − 1)(𝐵 + 1)𝐴 , 𝑝𝑙 =
1

1 + 𝐶(𝑁𝑙 +𝐵)−𝐴
,

12 Chapter 3. Python API

napkinXC

where 𝑁 is total number of data points, 𝑁𝑗 is total number of data points for and 𝐴 and 𝐵 are dataset specific
parameters.

Parameters

• Y (ndarray, csr_matrix, list[list[int]]) – Labels (typically ground truth
for train data) provided as a matrix with non-zero values for relevant labels.

• A (float, optional) – Dataset specific parameter, typical values:

– 0.5: WikiLSHTC-325K and WikipediaLarge-500K

– 0.6: Amazon-670K and Amazon-3M

– 0.55: otherwise

Defaults to 0.55

• B (float, optional) – Dataset specific parameter, typical values:

– 0.4: WikiLSHTC-325K and WikipediaLarge-500K

– 2.6: Amazon-670K and Amazon-3M

– 1.5: otherwise

Defaults to 1.5

Returns Array with the propensity for all labels

Return type ndarray

3.3.7 napkinxc.measures.ndcg_at_k

napkinxc.measures.ndcg_at_k(Y_true, Y_pred, k=5, zero_division=0)
Calculate normalized Discounted Cumulative Gain (nDCG) at 1-k places.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• zero_division (float, optional) – Value to add when there is a zero division,
typically set to 0, defaults to 0

Returns Values of nDCG at 1-k places.

Return type ndarray

3.3.8 napkinxc.measures.psprecision_at_k

napkinxc.measures.psprecision_at_k(Y_true, Y_pred, inv_ps, k=5, normalize=True)
Calculate Propensity Scored Precision (PSP) at 1-k places. This measure can be also called weighted precision.

3.3. Measures 13

napkinXC

PSP at k is defined as:

𝑝𝑠𝑝@𝑘 =
1

𝑘

∑︁
𝑙∈rank𝑘(𝑦𝑦𝑦)

𝑞𝑙𝑦𝑙,

where 𝑦𝑦𝑦 ∈ 0, 1𝑚 is ground truth label vector, 𝑦𝑦𝑦 ∈ R𝑚 is predicted labels score vector, rank𝑘(𝑦𝑦𝑦) returns the 𝑘
indices of 𝑦𝑦𝑦 with the largest values, ordered in descending order, and 𝑞𝑞𝑞 is vector of inverse propensities.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• inv_ps (ndarray, list, dict) – Inverse propensity (propensity scores) for each
label (label weights). In case of text labels needs to be a dict.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• normalize (bool, optional) – Normalize result to [0, 1] range by dividing it by best
possible value, commonly used to report results, defaults to True

Returns Values of PSP at 1-k places.

Return type ndarray

3.3.9 napkinxc.measures.psrecall_at_k

napkinxc.measures.psrecall_at_k(Y_true, Y_pred, inv_ps, k=5, normalize=True,
zero_division=0)

Calculate Propensity Scored Recall (PSR) at 1-k places.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• inv_ps (ndarray, list, dict) – Inverse propensity (propensity scores) for each
label. In case of text labels needs to be a dict.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• zero_division (float, optional) – Value to add when there is a zero division,
typically set to 0, defaults to 0

• normalize (bool, optional) – Normalize result to [0, 1] range by dividing it by best
possible value, commonly used to report results, defaults to True

Returns Values of PSR at 1-k places.

14 Chapter 3. Python API

napkinXC

Return type ndarray

3.3.10 napkinxc.measures.psdcg_at_k

napkinxc.measures.psdcg_at_k(Y_true, Y_pred, inv_ps, k=5, normalize=True)
Calculate Propensity Scored Discounted Cumulative Gain (PSDCG) at 1-k places.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• inv_ps (ndarray, list, dict) – Inverse propensity (propensity scores) for each
label. In case of text labels needs to be a dict.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• normalize (bool, optional) – Normalize result to [0, 1] range by dividing it by best
possible value, commonly used to report results, defaults to True

Returns Values of PSDCG at 1-k places.

Return type ndarray

3.3.11 napkinxc.measures.psndcg_at_k

napkinxc.measures.psndcg_at_k(Y_true, Y_pred, inv_ps, k=5, zero_division=0, normalize=True)
Calculate Propensity Scored normalized Discounted Cumulative Gain (PSnDCG) at 1-k places.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list[int|str]],
list[list[tuple[int|str, float]]) – Predicted labels provided as a ma-
trix with scores or list of rankings as a list of labels or tuples of labels with scores (label,
score). In the case of the matrix, the ranking will be calculated by sorting scores in
descending order.

• inv_ps (ndarray, list, dict) – Inverse propensity (propensity scores) for each
label. In case of text labels needs to be a dict.

• k (int, optional) – Calculate at places from 1 to k, defaults to 5

• zero_division (float, optional) – Value to add when there is a zero division,
typically set to 0, defaults to 0

• normalize (bool, optional) – Normalize result to [0, 1] range by dividing it by best
possible value, commonly used to report results, defaults to True

Returns Values of PSnDCG at 1-k places.

3.3. Measures 15

napkinXC

Return type ndarray

3.3.12 napkinxc.measures.hamming_loss

napkinxc.measures.hamming_loss(Y_true, Y_pred)
Calculate unnormalized (to avoid very small numbers because of large number of labels) hamming loss - average
number of misclassified labels.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list|set[int|str]],
list[list|set[tuple[int|str, float]]) – Predicted labels provided as
a matrix with scores or list of lists of labels or tuples of labels with scores (label, score).

Returns Value of hamming loss.

Return type float

3.3.13 napkinxc.measures.f1_measure

napkinxc.measures.f1_measure(Y_true, Y_pred, average=’micro’, zero_division=0)
Calculate F1 measure, also known as balanced F-score or F-measure.

Parameters

• Y_true (ndarray, csr_matrix, list[list|set[int|str]]) – Ground
truth provided as a matrix with non-zero values for true labels or a list of lists or sets of
true labels.

• Y_pred (ndarray, csr_matrix, list[list|set[int|str]],
list[list|set[tuple[int|str, float]]) – Predicted labels provided as
a matrix with scores or list of lists of labels or tuples of labels with scores (label, score).

• average (str) – Determines the type of performed averaging {'micro', 'macro',
'sample'}, default to 'micro'

• zero_division (float, optional) – Value to add when there is a zero division,
typically set to 0, defaults to 0

Returns Value of F1-measure.

Return type float

16 Chapter 3. Python API

CHAPTER 4

Indices and tables

• genindex

• search

17

napkinXC

18 Chapter 4. Indices and tables

Index

C
coverage_at_k() (in module napkinxc.measures),

11

D
dcg_at_k() (in module napkinxc.measures), 11

F
f1_measure() (in module napkinxc.measures), 16

H
hamming_loss() (in module napkinxc.measures), 16

J
Jain_et_al_inverse_propensity() (in mod-

ule napkinxc.measures), 12
Jain_et_al_propensity() (in module nap-

kinxc.measures), 12

N
ndcg_at_k() (in module napkinxc.measures), 13

P
precision_at_k() (in module napkinxc.measures),

10
psdcg_at_k() (in module napkinxc.measures), 15
psndcg_at_k() (in module napkinxc.measures), 15
psprecision_at_k() (in module nap-

kinxc.measures), 13
psrecall_at_k() (in module napkinxc.measures),

14

R
recall_at_k() (in module napkinxc.measures), 10

19

	Python Quick Start
	Using C++ executable
	Python API
	Indices and tables
	Index

