napkinXC

Oct 17, 2022

Contents:

1	Python Quick Start	3
2	Using C++ executable	5
3	Python API	9
4	Indices and tables	17
Inc	Index	

Note: Documentation is currently a work in progress!

napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification that implements the following methods both in Python and C++:

- Probabilistic Label Trees (PLTs) for multi-label log-time training and prediction,
- Hierarchical softmax (HSM) for multi-class log-time training and prediction,
- Binary Relevance (BR) multi-label baseline,
- One Versus Rest (OVR) multi-class baseline.

All the methods decompose multi-class and multi-label into the set of binary learning problems.

Right now, the detailed descirption of methods and their parameters can be found in this paper: Probabilistic Label Trees for Extreme Multi-label Classification

CHAPTER 1

Python Quick Start

1.1 Installation

Python (3.5+) version of napkinXC can be easily installed from PyPy repository on Linux and MacOS (Windows is currently not supported). It requires modern C++17 compiler, CMake and Git installed:

pip install napkinxc

or directly from the GitHub repository:

pip install pip install git+https://github.com/mwydmuch/napkinXC.git

1.2 Usage

napkinxc module contains three submodules: models that contains all the model classes and two additional modules

Minimal example of usage:

```
from napkinxc.datasets import load_dataset
from napkinxc.models import PLT
from napkinxc.measures import precision_at_k
X_train, Y_train = load_dataset("eurlex-4k", "train")
X_test, Y_test = load_dataset("eurlex-4k", "test")
plt = PLT("eurlex-model")
plt.fit(X_train, Y_train)
Y_pred = plt.predict(X_test, top_k=1)
print(precision_at_k(Y_test, Y_pred, k=1))
```

CHAPTER 2

Using C++ executable

napkinXC can also be built and used as an executable that can be used to train and evaluate models and make a prediction.

2.1 Building

To build napkinXC, first clone the project repository and run the following commands in the root directory of the project. It requires modern C++17 compiler, CMake and Git installed. Set CXX and CC environmental variables before running cmake command if you want to build with the specific C++ compiler.

cmake . make

-B options can be passed to CMake command to specify other build directory. After successful compilation, nxc executable should appear in the root or specified build directory.

2.2 LIBSVM data format

napkinXC supports multi-label svmlight/libsvm like-format (less strict) and format of datasets from The Extreme Classification Repository, which has an additional header line with a number of data points, features, and labels.

The format is text-based. Each line contains an instance and is ended by a n character.

```
<label>, <label>, ... <feature>(:<value>) <feature>(:<value>) ...
```

<label> and <feature> are indexes that should be positive integers. Unlike to normal symlight/libsym format, labels and features do not have to be sorted in ascending order. The :<value> can be omitted after <feature>, to assume value = 1.

2.3 Usage

nxc executable needs command, i.e. train, test, predict as a first argument. -i/--input and -o/--output arguments needs to be always provided.

nxc <command> -i <path to dataset> -o <path to model directory> <args> ...

2.4 Command line options

```
Usage: nxc <command> <args>
Commands:
   train
                            Train model on given input data
                            Test model on given input data
   test
                            Predict for given data
   predict
                           Use online f-measure optimization
   ofo
                           Print napkinXC version
   version
   help
                            Print help
Args:
   General:
    -i, --input
                            Input dataset, required
    -o, --output
                             Output (model) dir, required
    -m, --model
                            Model type (default = plt):
                            Models: ovr, br, hsm, plt, oplt, svbopFull, svbopHf,
→brMips, svbopMips
   --ensemble
                            Number of models in ensemble (default = 1)
   -t, --threads
                            Number of threads to use (default = 0)
                            Note: -1 to use #cpus - 1, 0 to use #cpus
   --hash
                            Size of features space (default = 0)
                            Note: 0 to disable hashing
   --featuresThreshold
                            Prune features below given threshold (default = 0.0)
   --seed
                             Seed (default = system time)
   --verbose
                            Verbose level (default = 2)
   Base classifiers:
    --optimizer
                            Optimizer used for training binary classifiers (default =____
\rightarrowliblinear)
                             Optimizers: liblinear, sgd, adagrad, fobos
                             Value of the bias features (default = 1)
    --bias
    --weightsThreshold
                            Threshold value for pruning models weights (default = 0.1)
   LIBLINEAR:
                            (more about LIBLINEAR: https://github.com/cjlin1/
\rightarrow liblinear)
    -s, --liblinearSolver LIBLINEAR solver (default for log loss = L2R_LR_DUAL, for
\rightarrow 12 loss = L2R_L2LOSS_SVC_DUAL)
                             Supported solvers: L2R_LR_DUAL, L2R_LR, L1R_LR,
                                                L2R_L2LOSS_SVC_DUAL, L2R_L2LOSS_SVC,
→L2R_L1LOSS_SVC_DUAL, L1R_L2LOSS_SVC
    -c, --liblinearC
                            LIBLINEAR cost co-efficient, inverse of regularization
\leftrightarrowstrength, must be a positive float,
                            smaller values specify stronger regularization (default =_
\rightarrow 10.0
   --eps, --liblinearEps LIBLINEAR tolerance of termination criterion (default = 0.
                                                                           (continues on next page)
```

(continued from previous page)

```
SGD/AdaGrad:
   -l, --lr, --eta
                            Step size (learning rate) for online optimizers (default_
→= 1.0)
                            Number of training epochs for online optimizers (default_
   --epochs
<u>→</u>= 1)
                            Defines starting step size for AdaGrad (default = 0.001)
   --adagradEps
  Tree:
                           Arity of tree nodes (default = 2)
   -a, --arity
                           Maximum degree of pre-leaf nodes. (default = 100)
   --maxLeaves
   --tree
                            File with tree structure
   --treeType
                            Type of a tree to build if file with structure is not
⇔provided
                            tree types: hierarchicalKmeans, huffman,
→completeKaryInOrder, completeKaryRandom,
                                        balancedInOrder, balancedRandom, _
\rightarrowonlineComplete
   K-Means tree:
   --kmeansEps
                            Tolerance of termination criterion of the k-means.
⇔clustering
                            used in hierarchical k-means tree building procedure.
\leftrightarrow (default = 0.001)
   --kmeansBalanced
                            Use balanced K-Means clustering (default = 1)
   Prediction:
   --topK
                            Predict top-k labels (default = 5)
   --threshold
                            Predict labels with probability above the threshold
\hookrightarrow (default = 0)
                           Path to a file with threshold for each label
   --thresholds
   Test:
                            Evaluate test using set of measures (default = "p@1,r@1,
   --measures
→c@1,p@3,r@3,c@3,p@5,r@5,c@5")
                            Measures: acc (accuracy), p (precision), r (recall), c
→ (coverage), hl (hamming loos)
                                      p@k (precision at k), r@k (recall at k), c@k
\leftrightarrow (coverage at k), s (prediction size)
```

CHAPTER $\mathbf{3}$

Python API

3.1 Models

models.PLT			
models.HSM			
models.BR			
models.OVR			

3.2 Datasets

datasets.download_dataset	
datasets.load_dataset	
datasets.load_libsvm_file	
datasets.load_json_lines_file	
datasets.to_csr_matrix	
datasets.to_np_matrix	

3.3 Measures

<pre>measures.precision_at_k(Y_true, Y_pred[,</pre>	Calculate precision at 1-k places.
k])	
<pre>measures.recall_at_k(Y_true, Y_pred[, k,])</pre>	Calculate recall at 1-k places.
<pre>measures.coverage_at_k(Y_true, Y_pred[, k])</pre>	Calculate coverage at 1-k places.
<pre>measures.dcg_at_k(Y_true, Y_pred[, k])</pre>	Calculate Discounted Cumulative Gain (DCG) at 1-k
	places.
	Continued on port page

Continued on next page

measures.Jain_et_al_inverse_propensity(Calculate inverse propensity as proposed in Jain et al.				
A, B])				
<pre>measures.Jain_et_al_propensity(Y[, A,</pre>	Calculate propensity as proposed in Jain et al.			
B])				
<pre>measures.ndcg_at_k(Y_true, Y_pred[, k,])</pre>	Calculate normalized Discounted Cumulative Gain			
	(nDCG) at 1-k places.			
<pre>measures.psprecision_at_k(Y_true, Y_pred,</pre>	Calculate Propensity Scored Precision (PSP) at 1-k			
inv_ps)	places.			
<pre>measures.psrecall_at_k(Y_true, Y_pred,</pre>	Calculate Propensity Scored Recall (PSR) at 1-k places.			
inv_ps)				
<pre>measures.psdcg_at_k(Y_true, Y_pred, inv_ps)</pre>	Calculate Propensity Scored Discounted Cumulative			
	Gain (PSDCG) at 1-k places.			
<pre>measures.psndcg_at_k(Y_true, Y_pred, inv_ps)</pre>	Calculate Propensity Scored normalized Discounted			
	Cumulative Gain (PSnDCG) at 1-k places.			
measures.hamming_loss(Y_true, Y_pred)	Calculate unnormalized (to avoid very small numbers			
	because of large number of labels) hamming loss - av-			
	erage number of misclassified labels.			
<pre>measures.f1_measure(Y_true, Y_pred[,])</pre>	Calculate F1 measure, also known as balanced F-score			
	or F-measure.			

Table 3 – continued from previous page

3.3.1 napkinxc.measures.precision_at_k

napkinxc.measures.precision_at_k (Y_true, Y_pred, k=5)

Calculate precision at 1-k places. Precision at k is defined as:

$$p@k = \frac{1}{k} \sum_{l \in \operatorname{rank}_k(\hat{\boldsymbol{y}})} y_l,$$

where $\boldsymbol{y} \in 0, 1^m$ is ground truth label vector, $\hat{\boldsymbol{y}} \in \mathbb{R}^m$ is predicted labels score vector, and rank_k($\hat{\boldsymbol{y}}$) returns the k indices of $\hat{\boldsymbol{y}}$ with the largest values, ordered in descending order.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- k (int, optional) Calculate at places from 1 to k, defaults to 5

Returns Values of precision at 1-k places.

Return type ndarray

3.3.2 napkinxc.measures.recall_at_k

```
napkinxc.measures.recall_at_k (Y_true, Y_pred, k=5, zero_division=0)
Calculate recall at 1-k places. Recall at k is defined as:
```

$$r@k = \frac{1}{||\boldsymbol{y}||_1} \sum_{l \in \operatorname{rank}_k(\hat{\boldsymbol{y}})} y_l \,,$$

where $\boldsymbol{y} \in 0, 1^m$ is ground truth label vector, $\hat{\boldsymbol{y}} \in \mathbb{R}^m$ is predicted labels score vector, and rank_k($\hat{\boldsymbol{y}}$) returns the k indices of $\hat{\boldsymbol{y}}$ with the largest values, ordered in descending order.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **zero_division** (*float*, *optional*) Value to add when there is a zero division, typically set to 0, defaults to 0

Returns Values of recall at 1-k places.

Return type ndarray

3.3.3 napkinxc.measures.coverage_at_k

```
napkinxc.measures.coverage_at_k(Y_true, Y_pred, k=5)
```

Calculate coverage at 1-k places.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- k (int, optional) Calculate at places from 1 to k, defaults to 5

Returns Values of coverage at 1-k places.

Return type ndarray

3.3.4 napkinxc.measures.dcg_at_k

napkinxc.measures.dcg_at_k(Y_true, Y_pred, k=5)

Calculate Discounted Cumulative Gain (DCG) at 1-k places. DCG at k is defined as:

$$DCG@k = \sum_{i=1}^{k} \frac{y_{\operatorname{rank}_{k}(\hat{\boldsymbol{y}})_{i}}}{\log_{2}(i+1)}$$

where $\boldsymbol{y} \in 0, 1^m$ is ground truth label vector, $\hat{\boldsymbol{y}} \in \mathbb{R}^m$ is predicted labels score vector, and rank_k($\hat{\boldsymbol{y}}$) returns the k indices of $\hat{\boldsymbol{y}}$ with the largest values, ordered in descending order.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- **k** (*int*, *optional*) Calculate at places from 1 to k, defaults to 5

Returns Values of DCG at 1-k places.

Return type ndarray

3.3.5 napkinxc.measures.Jain_et_al_inverse_propensity

napkinxc.measures.Jain_et_al_inverse_propensity(Y, A=0.55, B=1.5)

Calculate inverse propensity as proposed in Jain et al. 2016. Inverse propensity q_l of label l is calculated as:

$$C = (\log N - 1)(B + 1)^{A}, q_{l} = 1 + C(N_{l} + B)^{-A},$$

where N is total number of data points, N_j is total number of data points for and A and B are dataset specific parameters.

Parameters

- Y (*ndarray*, *csr_matrix*, *list[list[tuple[int|str*, *float]]*) Labels (typically ground truth for train data) provided as a matrix with non-zero values for relevant labels.
- A (float, optional) Dataset specific parameter, typical values:
 - 0.5: WikiLSHTC-325K and WikipediaLarge-500K
 - 0.6: Amazon-670K and Amazon-3M
 - 0.55: otherwise

Defaults to 0.55

- **B**(float, optional) Dataset specific parameter, typical values:
 - 0.4: WikiLSHTC-325K and WikipediaLarge-500K
 - 2.6: Amazon-670K and Amazon-3M
 - 1.5: otherwise
 - Defaults to 1.5

Returns Array with the inverse propensity for all labels

Return type ndarray

3.3.6 napkinxc.measures.Jain_et_al_propensity

```
napkinxc.measures.Jain_et_al_propensity (Y, A=0.55, B=1.5)
Calculate propensity as proposed in Jain et al. 2016. Propensity p<sub>l</sub> of label l is calculated as:
```

$$C = (\log N - 1)(B + 1)^{A}, \ p_{l} = \frac{1}{1 + C(N_{l} + B)^{-A}},$$

where N is total number of data points, N_j is total number of data points for and A and B are dataset specific parameters.

Parameters

- Y (*ndarray*, *csr_matrix*, *list[list[int]]*) Labels (typically ground truth for train data) provided as a matrix with non-zero values for relevant labels.
- A (float, optional) Dataset specific parameter, typical values:
 - 0.5: WikiLSHTC-325K and WikipediaLarge-500K
 - 0.6: Amazon-670K and Amazon-3M
 - 0.55: otherwise

Defaults to 0.55

- **B**(float, optional) Dataset specific parameter, typical values:
 - 0.4: WikiLSHTC-325K and WikipediaLarge-500K
 - 2.6: Amazon-670K and Amazon-3M
 - 1.5: otherwise

Defaults to 1.5

Returns Array with the propensity for all labels

Return type ndarray

3.3.7 napkinxc.measures.ndcg_at_k

napkinxc.measures.ndcg_at_k (Y_true, Y_pred, k=5, zero_division=0)

Calculate normalized Discounted Cumulative Gain (nDCG) at 1-k places.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **zero_division** (*float*, *optional*) Value to add when there is a zero division, typically set to 0, defaults to 0

Returns Values of nDCG at 1-k places.

Return type ndarray

3.3.8 napkinxc.measures.psprecision_at_k

napkinxc.measures.psprecision_at_k(Y_true, Y_pred, inv_ps, k=5, normalize=True)

Calculate Propensity Scored Precision (PSP) at 1-k places. This measure can be also called weighted precision.

PSP at k is defined as:

$$psp@k = \frac{1}{k} \sum_{l \in \text{rank}_k(\hat{\boldsymbol{y}})} q_l \hat{y}_l,$$

where $\boldsymbol{y} \in 0, 1^m$ is ground truth label vector, $\hat{\boldsymbol{y}} \in \mathbb{R}^m$ is predicted labels score vector, rank_k($\hat{\boldsymbol{y}}$) returns the k indices of $\hat{\boldsymbol{y}}$ with the largest values, ordered in descending order, and \boldsymbol{q} is vector of inverse propensities.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- inv_ps (*ndarray*, *list*, *dict*) Inverse propensity (propensity scores) for each label (label weights). In case of text labels needs to be a dict.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **normalize** (*bool*, *optional*) Normalize result to [0, 1] range by dividing it by best possible value, commonly used to report results, defaults to True

Returns Values of PSP at 1-k places.

Return type ndarray

3.3.9 napkinxc.measures.psrecall_at_k

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- inv_ps (*ndarray*, *list*, *dict*) Inverse propensity (propensity scores) for each label. In case of text labels needs to be a dict.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **zero_division** (*float*, *optional*) Value to add when there is a zero division, typically set to 0, defaults to 0
- **normalize** (*bool*, *optional*) Normalize result to [0, 1] range by dividing it by best possible value, commonly used to report results, defaults to True

Returns Values of PSR at 1-k places.

Return type ndarray

3.3.10 napkinxc.measures.psdcg_at_k

napkinxc.measures.psdcg_at_k (Y_true, Y_pred, inv_ps, k=5, normalize=True) Calculate Propensity Scored Discounted Cumulative Gain (PSDCG) at 1-k places.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- **Y_pred** (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) – Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- **inv_ps** (*ndarray*, *list*, *dict*) Inverse propensity (propensity scores) for each label. In case of text labels needs to be a dict.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **normalize** (*bool*, *optional*) Normalize result to [0, 1] range by dividing it by best possible value, commonly used to report results, defaults to True

Returns Values of PSDCG at 1-k places.

Return type ndarray

3.3.11 napkinxc.measures.psndcg_at_k

napkinxc.measures.psndcg_at_k (Y_true, Y_pred, inv_ps, k=5, zero_division=0, normalize=True) Calculate Propensity Scored normalized Discounted Cumulative Gain (PSnDCG) at 1-k places.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- Y_pred (ndarray, csr_matrix, list[list[int|str]], list[list[tuple[int|str, float]]) - Predicted labels provided as a matrix with scores or list of rankings as a list of labels or tuples of labels with scores (label, score). In the case of the matrix, the ranking will be calculated by sorting scores in descending order.
- **inv_ps** (*ndarray*, *list*, *dict*) Inverse propensity (propensity scores) for each label. In case of text labels needs to be a dict.
- k (int, optional) Calculate at places from 1 to k, defaults to 5
- **zero_division** (*float*, *optional*) Value to add when there is a zero division, typically set to 0, defaults to 0
- **normalize** (*bool*, *optional*) Normalize result to [0, 1] range by dividing it by best possible value, commonly used to report results, defaults to True

Returns Values of PSnDCG at 1-k places.

Return type ndarray

3.3.12 napkinxc.measures.hamming_loss

napkinxc.measures.hamming_loss(Y_true, Y_pred)

Calculate unnormalized (to avoid very small numbers because of large number of labels) hamming loss - average number of misclassified labels.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- **Y_pred** (ndarray, csr_matrix, list[list/set[int/str]], list[list/set[tuple[int/str, float]]) – Predicted labels provided as a matrix with scores or list of lists of labels or tuples of labels with scores (label, score).

Returns Value of hamming loss.

Return type float

3.3.13 napkinxc.measures.f1_measure

napkinxc.measures.fl_measure(Y_true, Y_pred, average='micro', zero_division=0) Calculate F1 measure, also known as balanced F-score or F-measure.

Parameters

- **Y_true** (*ndarray*, *csr_matrix*, *list[list|set[int|str]]*) Ground truth provided as a matrix with non-zero values for true labels or a list of lists or sets of true labels.
- **Y_pred** (ndarray, csr_matrix, list[list|set[int|str]], list[list|set[tuple[int|str, float]]) Predicted labels provided as a matrix with scores or list of lists of labels or tuples of labels with scores (label, score).
- **average** (*str*) Determines the type of performed averaging {'micro', 'macro', 'sample'}, default to 'micro'
- **zero_division** (*float*, *optional*) Value to add when there is a zero division, typically set to 0, defaults to 0

Returns Value of F1-measure.

Return type float

CHAPTER 4

Indices and tables

- genindex
- search

Index

С

D

dcg_at_k() (in module napkinxc.measures), 11

F

f1_measure() (in module napkinxc.measures), 16

Η

hamming_loss() (in module napkinxc.measures), 16

J

Jain_et_al_inverse_propensity() (in module napkinxc.measures), 12 Jain_et_al_propensity() (in module napkinxc.measures), 12

Ν

ndcg_at_k() (in module napkinxc.measures), 13

Ρ

precision_at_k() (in module napkinxc.measures), 10 psdcg_at_k() (in module napkinxc.measures), 15 psndcg_at_k() (in module napkinxc.measures), 15 psprecision_at_k() (in module napkinxc.measures), 13 psrecall_at_k() (in module napkinxc.measures), 14

R

recall_at_k() (in module napkinxc.measures), 10